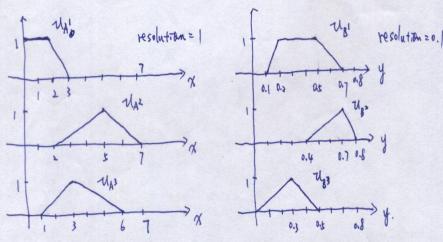
國立臺北科技大學 九十八學年第二學期電機系博士班資格考試

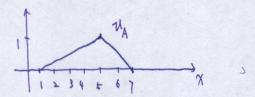
模糊控制 試題

第一頁 共一頁

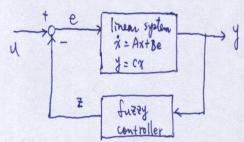
注意事項:


- 1. 本試題共【1】題,配分共100分。
- 2. 請按順序標明題號作答,不必抄題。
- 3. 全部答案均須答在試卷答案欄內,否則不予計分。
- 4. 考試時間:二小時。
- 1. Given a fuzzy inference system with product inference engine, singleton fuzzifier, center-average defuzzification:

If x_1 is A_1^l and x_2 is A_2^l and,..., and x_n is A_n^l , then y is b^l , l=1...M, where the membership function for the fuzzy set A_i^l , i=1...M, is a Gaussian function $N(\overline{x}_i^l, \sigma_i^l)$, and the membership function for the fuzzy set b^l is a fuzzy singleton, if you have N input pairs (x_0^p, y_0^p) , p=1...N, please show the derivation how you learn the parameters in the fuzzy inference system, i.e., the parameters $\overline{x}_i^l, \sigma_i^l, b^l, i=1...N, l=1...M$, by gradient descent approach. (30%)


2. Given a fuzzy system:

If x is A^l , then y is B^l , l = 1...3,


where the membership functions for A^l and B^l , l = 1...3, are as following,

- (a) please find the fuzzy relation between the input x and output y of the fuzzy system.
- (b) If x is described by a fuzzy set A with membership as following, please calculate the output by fuzzy composition and the center-gravity defuzzification approach.

- (c) Repeat part (b) to calculate the output using regular approach that calculates the degree of firing of every fuzzy rule.
- 3. Given a stable linear system as following, please show how you design your fuzzy controller so that the closed-loop system is L_p stable, $p \in [0, \infty)$.

4. Please describe how you design a fuzzy system to uniformly approximate the function $g(x_1, x_2) = 0.4 + 0.3x_1 + 0.26x_2 - 0.04x_1x_2$, defined on $U = [-1.5, 1.5] \times [-1.5, 1.5]$ with a required accuracy $\varepsilon = 0.1$.