國立臺北科技大學

九十六學年第一學期電機系博士班資格考試

隨機程序(公告用)

填學生證號碼

第二頁 共二頁

<u>注意事項</u>

- 本試題共【5】題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。
- 考試時間:二小時。
- 1. (a) (6pt) Consider the probability space (Ω, F, P) . Here $\Omega = (0, 1]$, P is arbitrary, and $F = \{\phi, \Omega, A, A^C\}$, where A = (0, 1/3]. Is the function X defined by $X(\omega) = I_A(\omega)$ a random variable on (Ω, F, P) ? Justify your answer.
 - (b) (6pt) $\{X_k, k \in \square\}$ is an i.i.d. sequence of random variables such that $E[|X_k|] < 1$. Show that the product $\prod_{k=1}^{n} X_{k}$ converges to zero in probability as n tends to infinity.
 - (c) (6pt) The characteristic function of a random vector $\overline{X} = [X_1, X_2]$ is given by $\Phi_{\bar{X}}(u_1, u_2) = \exp\{-3u_1^2 + u_1u_2 - u_2^2\}$. Determine the MMSE linear estimator of X_1 given X_2 .
- 2. (a) (12pt) Let X be a random variable on a probability space (Ω, F, P) . State and prove the basic three properties of the cdf $F_X(x) \square P(X \le x)$.
 - (b) (8pt) Let $\Omega = (0,1]^2$, $F = B((0,1]^2)$ and P be a probability measure with uniform density $(\omega_1, \omega_2) \in (0, 1]^2$ $f(\omega_1, \omega_2) = 1$. Define the random variables $U(\omega_1, \omega_2) = \omega_1 + \omega_2$, $V(\omega_1, \omega_2) = \omega_1 - \omega_2$. Compute $F_{UV}(1, 0)$.

- 3. (a) (9pt) Give the definitions (the requirements) of the items Ω, F, P in a probability space (Ω, F, P) .
 - (b) (6pt) Let $\Omega = (0,1]$, and let G consists of subsets of Ω that are either finite or cofinite (A is cofinite if A^{C} is finite). Is the collection G a field on Ω ? Explain your answer? ("A set is finite" means this set contains only finite points)
 - (c) (7pt) Is G a σ field on Ω ? If yse, prove it. If no, find $\sigma(G)$.
- 4. (a) (10pt) Draw the relationship diagram for a random sequence $\{X_n; n \in \square\}$ converges in the following modes: point wise convergence, almost sure convergence, convergence in probability, convergence in r_{th} mean, convergence in distribution.
 - (b) (4pt) Show that if $X_n \xrightarrow{L_r} X$ for $r \ge 1$, than $X_n \xrightarrow{P} X$.
 - (c) (6pt) Give an example $\{X_n; n \in \square\}$ such that $X_n \xrightarrow{P} X$, but $X_n \xrightarrow{Lr} X$ and $X_n \xrightarrow{a.s.} X$. Justify your answer.
- 5. Let $\{X_n; n = 1, 2, ...\}$ be an i.i.d. Gaussian process with marginal pdf N(0,1) and let N_t be the Poisson counting process. A continuous time random walk can be defined by $Y(t) = \sum_{k=1}^{N_t} X_k$.
 - (a) (6pt) Find the expectation, covariance function of Y(t).
 - (b) (6pt) Find the characteristic function of Y(t).
 - (c) (4pt) Is Y(t) a Gaussian process? Explain your answer.
 - (c) (4pt) Is Y(t) a wide-sense stationary process? Explain your answer.