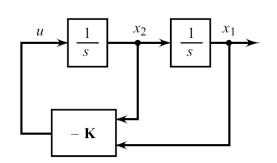
國立臺北科技大學

103 學年第一學期電機系博士班資格考試


最佳控制 試題

第一頁 共一頁

1				

- 1. 本試題共【4】題,配分共100分。
 2. 可使用非程式型計算機。
 3. 請按順序標明題號作答,不必抄題。
 4. 全部答案均須答在試卷答案欄內,否則不予計分。
- 考試時間:二小時。
- 1. (25%) Determine the optimal feedback gain matrix \mathbf{K} , such that the following performance index is minimized.

$$J = \frac{1}{2} \int_0^\infty (\mathbf{x}^T \mathbf{Q} \mathbf{x} + 2u^2) dt; \mathbf{Q} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

2. (25%) Consider the system (with scalar u and x)

$$\dot{x} = u$$
 $x(t_0)$ given

and with performance index $V(x(t_0), u(\cdot), t_0) = \int_{t_0}^T (u^2 + x^2) dt + x^2(T)$. Find the optimal control law u^* .

3. (25%) Consider the plant

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

with the performance index $J = \int_0^\infty (x_1^2 + u^2) dt$

Test whether an asymptotically stable optimal solution exits for this control problem.

4. (25%) Consider the plant

$$\dot{x} = x + v$$
, $y = x + w$

with $E[v(t)v(\tau)] = E[w(t)w(\tau)] = \delta(t-\tau)$ and v and w independent. Suppose that at time zero, x(0) is known to be zero. Design an optimal estimator.