國立臺北科技大學 九十七學年第一學期電機系博士班資格考試

數位通訊理論

填	學	生	證	號	碼
			ПТ		T

- 本試題共【6】題,配分共100分。
 請按順序標明題號作答,不必抄題,可用計算器。
- 全部答案均須答在試卷答案欄內,否則不予計分。
- 考試時間:二小時。
- 1. Briefly answer the following questions.
- (a) List the advantage(s) and disadvantage(s) of duobinary signaling scheme (correlative-level coding) with and without precoding. (8%)
- (b) What is the advantage of QPSK compared to BPSK? (4%)
- (c) Describe the major disadvantage of QPSK. How to improve it? (6%)
- 2. Given that $Y(t) = X(t)\cos(2\pi 10^4 t + \Theta)$ where X(t) is a WSS random process with PSD shown below, and Θ is a random variables that is uniformly distributed over the interval $[0, 2\pi]$. The signal X(t) and Θ come from physically independent sources. Calculate the power of Y(t) delivered to a $1-\Omega$ resistor. (18%) (Note: Complete process must be given)

- 3. Briefly compare the different among TDMA, FDMA, and CDMA. Also describe their applications. (15%)
- 4. An ideal sampling system is shown below where $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_s)$ with sampling frequency $f_s = 1/T_s$.
- (a) Derive $X_s(f)$, the Fourier transform of $x_s(t)$. (8%)
- (b) Sketch $X_s(f)$ if $x(t) = \sin c(2Wt)$ and $f_s = 3W$. (6%)
- (c) Specify H(f) for perfect reconstruction of x(t). (3%)

5. Two signals $s_1(t)$ and $s_2(t)$ are transmitted over an AWGN channel and the correlation receiver shown below is used for detection. It is assumed that they are equally likely. The received signal is $x(t) = s_i(t) + w(t)$, $0 \le t \le 1$, where w(t) is an AWGN of zero mean and with PSD of $\frac{N_0}{2}$ and E_j is the energy of $s_j(t)$. Answer the following problems.

FIGURE 5.9 (a) Detector or demodulator. (b) Signal transmission decoder.

- (a) Please determine the orthonormal basis function then plot the signal constellation and decision regions for optimum detection in the signal space. (8%)
- (b) Assume that w(t) = 1.5, $0 \le t \le 1$, calculate the values of y1 and y2 if $s_2(t)$ was transmitted. Describe your detection result in this case. (6%)

6. A pair of sinusoidal waves of a BPSK system is represented by $s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$

transmitted signal energy per bit. $(s_1(t) \text{ for symbol } 1 \text{ and } s_2(t) \text{ for symbol } 0)$ The received signal is defined by $x(t) = s_k(t) + w(t)$, $0 \le t \le T_b$, k = 1, 2, where w(t) is an AWGN of zero mean and with PSD $N_0/2$.

- (a) Assign orthonormal basis function(s) for this system. (3%)
- (b) Plot signal-space diagram for this system and indicate it optimum decision boundary. (6%)
- (c) Show that for the case of equiprobable symbols, the bit error rate for coherent BPSK over the AWGN channel is $p_e = \frac{1}{2} erfc(\sqrt{\frac{E_b}{N_0}})$. (9%)

TABLE A6.3 Fourier-transform pairs

Time Function	Fourier Transform		
$rect\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$		
sinc(2Wt)	$\frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$		
$\exp(-at)u(t), a>0$	$\frac{1}{a+j2\pi f}$		
$\exp(-a t), a>0$	$\frac{2a}{a^2+(2\pi f)^2}$		
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$		
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$		
$\delta(t)$	1		
1	$\delta(f)$		
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$		
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$		
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$		
$\sin(2\pi f_c t)$	$\frac{1}{2j}\left[\delta(f-f_c)-\delta(f+f_c)\right]$		
sgn(t)	$\frac{1}{j\pi f}$		
1	:(5)		
$\frac{1}{\pi t}$	$-j \operatorname{sgn}(f)$		
u(t)	$\frac{1}{2} \delta(f) + \frac{1}{j2\pi f}$		
$\sum_{j=-\infty}^{\infty} \delta(t-iT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_0} \right)$		

Notes: u(t) = unit step function $\delta(t) = \text{delta function, or unit impulse}$ $\operatorname{rect}(t) = \operatorname{rectangular function of unit amplitude and unit}$ $\operatorname{duration centered on the origin}$ $\operatorname{sgn}(t) = \operatorname{signum function}$ $\operatorname{sinc}(t) = \operatorname{sinc function}$