國立臺北科技大學

102 學年第二學期電機系博士班資格考試

數位通訊理論 試題

第一頁 共二頁

- 注意事項:

 1. 本試題共【5】題,配分共100分。

 2. 請按順序標明題號作答,不必抄題。

 3. 全部答案均須答在試卷答案欄內,否則不予計分。

 4. 考試時間:二小時。

1. (20 %)

Let X(t) be a stationary random process with auto-correlation function $R_X(\tau)$. Let $X_1(t) = X(t)\cos(2\pi f_c t + \Theta)$ and $X_2(t) = X(t)\sin(2\pi f_c t + \Theta)$, where the probability

 $\text{density function of } \Theta \quad \text{is} \quad f_\Theta(\theta) = \left\{ \begin{array}{ll} \frac{2}{\pi}, \ -\frac{\pi}{4} \leq \theta < \frac{\pi}{4}, \\ \\ 0, \ \text{elsewhere}. \end{array} \right. \qquad \text{If} \quad X(t) \quad \text{and} \quad \Theta \quad \text{are}$

independent, calculate the cross-correlation function of $X_1(t)$ and $X_2(t)$.

2. (20%)

Five instructions are used independently with probabilities {0.55, 0.21, 0.11, 0.07, 0.06}.

Construct a Huffman code for this instruction set.

3. (20%)

Consider the signal constellation as shown in the figure. The a priori probabilities for

- (a) Find the translation vector to translate the signal constellation into a new signal constellation with minimum average energy.
- (b) Calculate the average energy of the new signal constellation.

4. (20%)

In the BPSK system, the two signals are $s_1(t) = A_c k \sin(2\pi f_c t) + A_c \sqrt{1-k^2} \cos(2\pi f_c t)$ and $s_2(t) = A_c k \sin(2\pi f_c t) - A_c \sqrt{1-k^2} \cos(2\pi f_c t)$, $0 \le t \le T_b$, $0 \le k \le 1$. In the presence of additive white Gaussian noise of zero mean and power spectral density $\frac{N_0}{2}$, calculate the average probability of error.

5. (20%)

Consider the (4,1) code with generator matrix $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$.

- (a) Construct the syndrome table for all the single-error patterns.
- (b) If (1101) is received, find the decoded codeword by using the syndrome decoding.