國立臺北科技大學 九十七學年第一學期電機系博士班資格考試

資料庫試題

- 本試題共【8】題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。
- 1. (10%)Describe the process of mapping ER model concepts to relations.
- 2. Consider the following definitions.

create table Actor (create table Movie (create table WorksOn (
Name char(20),	Title char(20),	ActorName char(20),	
MarriedTo char(20),	Director char(20),	MovieTitle char(20),	
primary key (Name)	Year integer,	Primary key (ActorName, MovieTitle),	
)	primary key (Title)	foreign key (ActorName) references	
)	Actor(Name),	
		foreign key (MovieTitle) references	
		Movie(Title)	
)	

Specify the following queries in both **SQL** and **Relational Algebra**.

- (a) (10%)List the names of all the actors that are married to another actor.
- (b) (10%)For each actor, list the number of movies the actor has worked on this year.
- 3. (10%)Describe the difference between TABLEs and VIEWs.
- 4. (10%)Define dirty read and describe how it may cause a problem.
- 5. (10%)Discuss the timestamp ordering protocol for concurrency control.
- 6. (10%)Given a relation R with attributes $\{A,B,C,D,E\}$ and FDs $\{AB \rightarrow CDE; B \rightarrow C; D \rightarrow E\}$, decompose the relation into 3NF, indicating the primary key of each of the final relations.

7.Study the following transaction schedule:

Time:	T1	Т2	Т3
1	Read_item(A)		
2	A:=A+100		
3	Write_item(A)		
4			A:=0
5			Write_item(A)
6		Sum:=0	
7		Read_item(A)	
8		Sum:=Sum+A	
9		Read_item(B)	
10		Sum:=Sum+B	
11	Read_item(B)		
12	B:=B-100		
13	Write_item(B)		
14	Commit		
15			Commit
16	-	Commit	

- (a) (5%)Is the schedule (conflict) serializable? Explain why or why not.
- (b) (5%)Is the schedule recoverable? Explain why or why not.
- (c) (5%)Is the schedule cascadeless? Explain why or why not.
- (d) (5%) Is the schedule strict? Explain why or why not.
- 8. (10%)Assume that each bucket of an extensible hash index can fit exactly two records. Consider the following records, with the corresponding hash key values.

key	hash key value
A	0000
В	0001
С	0010
D	0011
Е	0100
F	0110
G	1000

We insert the records in the order given above. Show the extensible hash index after all records have been inserted.