國立臺北科技大學 九十六學年第一學期電機系博士班資格考試

數位通訊理論

填學生證號碼

第一頁 共三頁

注意事項:

- 1. 本試題共【5】題,配分共100分。
- 2. 請按順序標明題號作答,不必抄題。
- 3. 全部答案均須答在試卷答案欄內,否則不予計分。
- 4. 考試時間:二小時。
- 1. Briefly answer the following questions.
- (a) What is the advantage of QPSK as compared to BPSK? (4%)
- (b) What is the advantage of OQPSK as compared to QPSK? (4%)
- (c) What is white noise? (4%)
- (d) What modulation scheme is employed in the GSM system. What advantage(s) does this scheme have? (4%)
- (e) Why a nonuniform μ -law (or A-law) quantization is commonly used in the PCM-based telephone network? (4%)
- (f) How to overcome noise effects in the PCM system? (4%)
- 2. The PSD of a random process X(t) is shown below.
- (a) Determine and sketch the autocorrelation function $R_X(\tau)$ of X(t).(8%)
- (b) Find the DC power contained in X(t). (4%)
- (c) Find the AC power contained in X(t). (4%)
- (d) How to make uncorrelated samples of X(t)?(4%)
- (e) What condition will make samples in (d) statistically independent?(4%)

]

- 3. A discrete memoryless source has its output from alphabet set {A, B, C, D, E} with probability P(A)=1/2, P(B)=1/4, P(C)=1/8, P(D)=1/16, and P(E)=1/16, respectively.
 - (a) Determine the entropy of this source. (5%)
 - (b) Describe the meaning of the entropy. If possible, please explain it with the result obtained from (a). (5%)
 - (c) Calculate the coding efficiency ($\eta = \frac{H(S)}{\overline{L}}$) if Huffman coding scheme is applied. (5%)
- 4. A speech signal is transmitted using an M-ary PAM system. The sampling rate is 10,000 samples/sec and each sample is quantized to one of 256 levels (i.e.,8-bit quantization). Determine the minimum required bandwidth for transmitting the PAM wave if
 - (a) M=4 using an ideal Nyquist channel. (5%)
 - (b) M=32 using channel with raised cosine spectrum of $\alpha = 1$. (5%)
- 5. Three signals are given below.
 - (a) Are they orthogonal to each other over the observation interval $0 \le t \le 2$? Describe your reason(s). (6%)
 - (b) Using the Gram-Schmit orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals. (15%)
 - (c) Express each of these signals in terms of the set of basis functions found in (b). (6%)

TABLE A6.3	Fourier-trans	form p	pairs
------------	---------------	--------	-------

Time Function	Fourier Transform		
$rect(\frac{t}{T})$	T sinc(fT)		
sinc(2Wt)	$\frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$		
$\exp(-at)u(t), \qquad a>0$	$\frac{1}{a+j2\pi f}$		
$\exp(-a t), a>0$	$\frac{2a}{a^2+(2\pi f)^2}$		
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$		
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$		
$ t \ge T$			
8(t)	1		
1	$\delta(f)$		
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$		
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$		
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$		
$\sin(2\pi f_c t)$	$\frac{1}{2j}\left[\delta(f-f_c)-\delta(f+f_c)\right]$		
sgn(t)	$\frac{1}{i\pi f}$		
1	*****		
1 mt	$-j \operatorname{sgn}(f)$		
u(t)	$\frac{1}{2}\delta(f)+\frac{1}{i^2\pi f}$		
$\sum_{t=-\infty}^{\infty} \delta(t-iT_0)$	$\frac{1}{T_0} \sum_{n=1}^{\infty} \delta \left(f - \frac{n}{T_0} \right)$		

Notes: u(t) = unit sten function

ľ

rect(t) = rectangular function of unit amplitude and unit

duration centered on the origin

sgn(t) = signum function

sinc(t) = sinc function