國立臺北科技大學

九十七學年第二學期電機系博士班資格考試

模糊控制試題(公告用)

第一頁 共一頁

<u>注意事項</u> :	
1.	本試題共【5】題,配分共100分。
2.	請按順序標明題號作答,不必抄題。
3.	全部答案均須答在試卷答案欄內,否則不予計分。
4.	考試時間:二小時。

1. If t-norm is defined as the following:

Any function $t:[0,1]\times[0,1]\rightarrow[0,1]$ satisfying axioms $t_1 - t_4$ is called the fuzzy

t-norm.

 $t_{1}: t(0,0) = 0, \ t(a,1) = t(1,a) = a$ (boundary condition) $t_{2}: t(a,b) = t(b,a)$ (commutative condition) $t_{3}: \text{ if } a \le a' \text{ and } b \le b', \text{ then } t(a,b) \le t(a',b') \text{ (non-decreasing condition)}$ $t_{4}: t(t(a,b),c) = t(a,t(b,c))$ (associative condition)

Prove that $t_{dp}(a,b) \le t(a,b) \le \min(a,b)$ $\forall a,b \in [0,1]$, where $t_{dp}(.)$ is the drastic product. (20%)

2. Given a function $T(a,b) = \frac{ab}{max\{a,b,0.5\}}$, show that the function $T(\cdot)$ is an operation of t norm. (15%)

3. Suppose f is a function mapping ordered pairs from U₁ = {-2, -1, 0, 1, 2} and U₂ = {-2, 0,
2} to V, and f(x₁, x₂) = 2x₁² + x₂² - 6x₁x₂. Given two fuzzy sets A ⊂ U₁ and B ⊂ U₂ such that A
= 0.5/-2 + 0.3/-1 + 0.9/0 + 0.4/1 + 0.7/2 and B = 0.7/-2 + 0.2/0 + 0.4/2, (15%)
(a) find A²+3 and 5B+4A
(b) find f(A, B).
(c) find f(A, B).

4. (a) If s-norm and t-norm are Yager t-norm and Yager s-norm, respectively, show that $c(s_{\omega}(a,b)) = t_{\omega}(c(a), c(b))$, where the $c(\cdot)$ denotes the regular fuzzy complement. (b) if the algebraic sum $s_{as}(a, b) = a+b-ab$ and algebraic product $t_{ap}(a,b) = ab$, please show that $c(s_{as}(a,b)) = t_{ap}(c(a),c(b))$. (20%)

Yager clase of t-norms: $t_{\omega}(a,b) = 1 - \min(1, ((1-a)^{\omega} + (1-b)^{\omega})^{1/\omega}), \ \omega \in (0,\infty).$

Yager class of s-norms: $s_{\omega}(a,b) = \min(1, (a^{\omega} + b^{\omega})^{1/\omega}), \ \omega \in (0,\infty).$

5. Given a fuzzy rule base as follows, please write a computer program to implement this fuzzy rule base and calculate the output of this fuzzy inference system. Within your computer program, you should also include a part that allows you calculate the fuzzy output for any input values of u_1 and u_2 . Please state what approach you have adopted for the defuzzification and implement it in your computer program. Note that you are allowed to use any computer language **except** the MATLAB commands. (30%)

if u_1 is A_{11} and u_2 is A_{12} then $y = 4+u_1+4u_2$ if u_1 is A_{21} and u_2 is A_{22} then $y = 2+2.5u_1-3u_2$ if u_1 is A_{31} and u_2 is A_{32} then $y = 4+5u_1-2u_2$ where A_{11} , A_{12} , A_{21} , A_{22} , A_{31} and A_{32} are described as followings.

