國立臺北科技大學

106 學年第二學期電機系博士班資格考試

最佳控制 試題

第一頁 共一頁

- 本試題共【4】題,配分共100分。
 可使用非程式型計算機。
 請按順序標明題號作答,不必抄題。

- 全部答案均須答在試卷答案欄內,否則不予計分。
- 考試時間:二小時。
- 1. Consider the cost function $L = ax^2 + bxu + cu^2$ with the constraint x + mu + d = 0 where a, b, c, m, and d are positive scalar constants.
 - (a) (15%) Find the scalar u^* that yields an extremal value of L
 - (b) (10%) Is $L(u^*)$ a minimal value or a maximal value? Prove it.
- 2. (25%) Given the ARE $AX + A^{T}X + Q + XRX = 0$. The associated Hamiltonian matrix is $M = \begin{bmatrix} A & R \\ -O & -A^T \end{bmatrix}$. Show that if λ is one of the eigenvalues of M, so is $-\lambda$.
- 3. (25%) Consider the RLC circuit indicated in Figure 1 with $R = 1\Omega$, C = 1F, and L=1 H. Define state variables as $x_1(t) = e_c(t)$ and $x_2(t) = i_L(t)$. $u(t) = i_s(t)$ is the control input (dependent current source). Find $u^*(t)$ to

minimize the cost function $J = \frac{1}{2} \int_0^\infty \left[x_1^2(t) + u^2(t) \right] dt$.

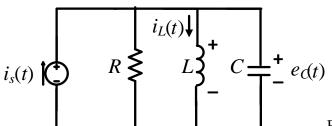


Figure 1

4. (25%) Consider a discrete-time control system defined by

$$x(k+1) = -2x(k) + u(k), x(0) = 1.$$

Determine the optimal control u(k) = -Kx(k) and the resulted optimal cost

for the performance index: $J = \frac{1}{2} \sum_{k=0}^{\infty} [x^2(k) + u^2(k)].$