國立臺北科技大學

九十八學年第一學期電機系博士班資格考試

隨機程序試題

第一頁 共一頁

- **注意事項**:

 本試題共【5】題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。
 'nt。
- 1. (a) (6pt) Give the definition of a probability measure P on a measurable space (Ω, F) .
 - (b) (6pt) Use the definition in part (a). Let F, G be two events, show that $P(F \cup G) = P(F) + P(G) - P(F \cap G)$.
 - (c) (8pt) Let Q be a set function defined on the measurable space ((0,1], B((0,1])) where B((0,1)] is the Borel field on the unit interval (0,1] and Q is defining by

 $Q(A) = \sum_{i=1}^{\infty} c 2^{-i} I_{\{2^{-i}\}}(A) \text{ where } I_{\{x\}}(B) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases} \text{ and } c \text{ is a constant. Is possible}$

Q be a probability measure on ((0,1], B((0,1])). Explain your answer.

- 2. Let X_1, X_2, \cdots be i.i.d. nonnegative random variables with exponential probability density function $f_X(x) = e^{-x} I_{[0,\infty)}(x)$. Let $Y_n = \max\{X_1, \dots, X_n\}$.
 - (a) (6pt) For a fixed a > 0, compute $P(Y_n > a_n)$.
 - (b) (6pt) If 0 < a < b, compute $P(Y_n \le a, Y_{n+1} > b)$.
 - (c) (8pt) Fix a > 0, and for $i \ge 1$ let A_i be the event that $X_i > a$. For a given $m \in \Box$, Find the probability that none of the events A_m, A_{m+1}, \cdots occurs. What is the probability that at least one of the events A_m, A_{m+1}, \cdots occurs.
- (a) (10pt) Prove the Weak Law of Large number: Let $(X_n)_{n\in\mathbb{Z}}$ be a sequence of 3. uncorrelated random variables with common means $EX_i = u$ and $\lim_{n} \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var} X_i = 0 \quad \text{. Show that} \quad S_n = \frac{X_1 + X_2 + \dots + X_n}{n} \xrightarrow{P} u.$

- (b) (10pt) Prove the **Cauchy-Schwarz inequality**: X, Y are square-integrable *r.v.*'s, then $(E(XY))^2 \le E(X^2)E(Y^2)$ with equality if and only if $X + \lambda Y = 0$.
- 4. (a) (5pt) Give the definition of an independent increment process.
 - (b) (5pt) Give an example of independent increment process and verify it.
 - (c) (5pt) Give the definition of a stationary process.
 - (d) (5pt) Give the definition of an random sequence $(X_n)_{n\in\mathbb{D}}$ converges almost surely (with probability one).
- 5. Let $\{X_n; n = 0, 1, 2, \dots\}$ be a i.i.d. random process with alphabet $\{0, 1\}$ and $P(X_n = 1) = \rho > 0$. Define the random process $\{W_n; n \in \square\}$ by $W_n = X_n \oplus X_{n-1}$ where
 - $\oplus \text{ is mod 2 addition(i.e. } W_n = \begin{cases} 1 & X_n \neq X_{n-1} \\ 0 & X_n = X_{n-1} \end{cases}.$
 - (a) (6pt) Find the pmf $p_{W_n}(k)$ of W_n .
 - (b) (6pt) Find the Correlation function $R_W(i, j)$ of $\{W_n : n \in \square\}$.
 - (c) (8pt) Show that $\{W_n; n \in \Box\}$ is a wide-sense stationary process and find its power spectral density $S_w(f)$.