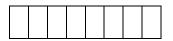
國立臺北科技大學

一百學年第二學期電機系博士班資格考試

數位通訊理論 試題

第一頁 共三頁



<u>注意事項</u>

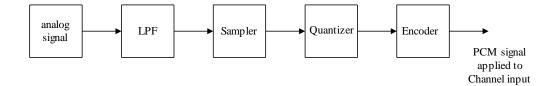
- 本試題共【5】題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。

1. (20%) Given that $g(t) = \operatorname{Arect}(\frac{t}{T})\cos(2\pi f_c t)$, find

(a) G(f)(4%), (b) $g_{+}(t)(4\%)$, (c) $\tilde{g}(t)(4\%)$, (d) $g_{I}(t)$ and $g_{O}(t)(8\%)$.

- 2. (16%) Specify the Nyquist rate for each of the following signals: (Note that $\sin c(\lambda) = \frac{\sin \pi \lambda}{\pi \lambda})$
- (a) $s(t) = \sin c(200t)$. (6%)
- (b) $s(t) = \sin c(200t) + \sin c^2(200t) . (10\%)$
- 3. (20%) The transmitter of a PCM system is given below where a uniform quantizer followed by a 5-bit binary encoder is used. The bit rate of the PCM system is equal to 50×10^6 bits/s.
- (a) What is the purpose of using the LPF (low pass filter)? (5%)

- (b) Determine the maximum allowed bandwidth of the input analog signal, by which the system may operate satisfactorily. (5%)
- (c) Determine the signal-to-(quantization) noise ratio of the (uniform) quantizer when the input analog signal is a full-load sinusoidal modulating wave of frequency 1 MHz. (5%)
- (d) Explain why a PCM system can achieve better performance than an analog system. (5%)

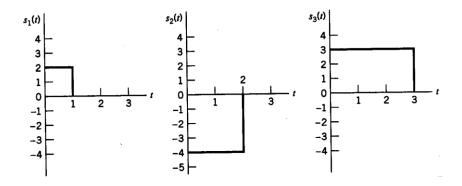


4. (20%) Two sinusoidal waves of a coherent BPSK system are respectively represented by

$$s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos 2\pi f_c t \text{ and } s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \pi), \text{ where } 0 \le t \le T_b, \text{ and } E_b \text{ is}$$

the transmitted signal energy per bit. The received signal is $x(t) = s_k(t) + w(t)$, $0 \le t \le T_b$, k = 1, 2, where w(t) is AWGN of zero mean and PSD $N_0/2$. Note: $s_1(t)$ for symbol 1 and $s_2(t)$ for symbol 0.

- (a) Assign orthonormal basis function(s) for this system. (4%)
- (b) Plot signal-space diagram for this system with optimum decision boundary. (4%)
- (c) Plot block diagrams of transmitter and receiver of this system. (8%)
- (d) Simply describe your decision rule for this system. (4%)
- 5. (24%) Three signals are given below.
- (a) Are they orthogonal to each other? Why? (6%)
- (b) Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals shown below. (12%)
- (c) Express each of these signals in terms of the set of basis functions found in (b). (6%)



Time Function	Fourier Transform
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T \operatorname{sinc}(fT)$
sinc(2 <i>Wt</i>)	$\frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(-at)u(t), a>0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), a>0$	$\frac{2a}{a^2+(2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$
(*)	
$\delta(t)$	1
$\frac{1}{\delta(t-t_0)}$	$\frac{\delta(f)}{\exp(-j2\pi ft_0)}$
$exp(j2\pi f_c t)$	$\frac{\partial (f - f_c)}{\partial (f - f_c)}$
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$
$\sin(2\pi f_c t)$	$\frac{1}{2j} \left[\delta(f - f_c) - \delta(f + f_c) \right]$
· · · · · · · · · · · · · · · · · · ·	2)
sgn(t)	$\frac{1}{j\pi f}$
$\frac{1}{\pi t}$	$-j \operatorname{sgn}(f)$
πt	
u(t)	$\frac{1}{2}\delta(f)+\frac{1}{j2\pi f}$
$\sum_{i=-\infty}^{\infty} \delta(t-iT_0)$	$\frac{1}{T_0}\sum_{n=-\infty}^{\infty}\delta\left(f-\frac{n}{T_0}\right)$

TABLE A6.3 Fourier-transform pairs

Notes: u(t) = unit step function

•

 $\delta(t)$ = delta function, or unit impulse

rect(t) = rectangular function of unit amplitude and unit duration centered on the origin

sgn(t) = signum functionsinc(t) = sinc function