國立臺北科技大學

九十八學年第一學期電機系博士班資格考試

高等數位訊號處理試題

第一頁 共三頁

- 注意事項:

 1. 本試題共【7】題,配分共100分。

 2. 請按順序標明題號作答,不必抄題;可使用計算器作答。

 3. 全部答案均須答在試卷答案欄內,否則不予計分。

 4. 考試時間:二小時。
- 1. The input–output pair shown in Figure 1 is given for a stable LTI system. (15 %)

Figure 1

(a) Determine the response to the input $x_1[n]$ in Figure 2.

(b) Determine the impulse response of the system.

2. The system function of a causal LTI system is

$$H(z) = \frac{1 - z^{-1}}{1 + \frac{3}{4}z^{-1}}$$

The input to this system is $x[n] = \left(\frac{1}{3}\right)^n u[n] + u[-n-1]$. (15 %)

- (a) Find the impulse response of the system h[n].
- (b) Find the output y[n].
- 3. A continuous-time signal $x_c(t)$, with Fourier transform $X_c(j\omega)$ shown in Figure 3, is sampled with sampling period $T = 2\pi/\Omega_0$ to form the sequence $x[n] = x_c(nT)$. (15 %)

Figure 3

- (a) Sketch the Fourier transform of x[n], $X(e^{j\omega})$ for $|\omega| < \pi$.
- (b) In terms of Ω_0 , what range of values of T can $x_c(t)$ be recovered from x[n]? Assume that ideal filters are available.
- 4. Consider the system in Figure 4. Find the system function relating the z-transforms of the input and output. (15 %)

Figure 4

5. Consider a causal continuous-time system with impulse response $h_c(t)$ and system function

$$H_c(s) = \frac{s+a}{(s+a)^2 + b^2}$$

Use impulse invariance to determine H(z) for a discrete-time system such that $h[n] = h_c(nT)$. (15 %)

6. Figure 5 shows two periodic sequences, $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$, with period N = 7. (15 %) Find a sequence $\tilde{y}[n]$ whose DFS is equal to the product of the DFS of $\tilde{x}_1[n]$ and the DFS of $\tilde{x}_2[n]$, i.e.,

Figure 5

7. Figure 6 shows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x[n] be the sequence whose DFT is X[k]. Specify how the elements of the sequence x[n] should be placed in the array $A[r], r = 0, 1, \dots, 7$. Also, specify how the elements of the DFT sequence X[k] should be extracted from the array $D[r], r = 0, 1, \dots, 7$. (10 %)

Figure 6