國立臺北科技大學

107 學年第一學期電機系博士班資格考試

現代控制理論 試題

- 本試題共3題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。
 考試時間:二小時。

- 1. Consider the following circuit system.

- a) (20%) If the output is $i_c(t)$, the input is v(t), and the state vector is $\begin{bmatrix} v_C(t) & i_L(t) \end{bmatrix}^T$, find the state-space representation.
- b) (20%) Convert the state-space representation in (a) to the transfer function with $R = 1\Omega$, L = 1H, C = 1F.

2. Consider the state-space equation of the system

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

where
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

An observer-based state feedback control is employed to stabilize the system.

- a) (15%) Choose the state feedback gain K to move the system poles to $-2 \pm j2\sqrt{3}$.
- b) (15%) Choose the observer gain K_e to let the observer modes lie at -8, -8.

- 3. Given a system with the transfer function $\frac{s+1}{(s^2+2s+1)(s+2)}$.
 - a) (10%) Determine the degree and poles of the system.
 - b) (20%) Find a minimal realization. Check its controllability and observability.