國立臺北科技大學

105 學年第二學期電機系博士班資格考試

控制系統(大學部) 試題

- 本試題共4題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。
 考試時間:二小時。

- **1.** Considering the following network circuit.

10% (a) Find the transfer function $V_c(s)/V_i(s)$.

 $\underline{15\%}$ (b) If C = 1F, find the range of R such that the system is stable.

2. Given the unity feedback system with the plant $G(s) = \frac{K(s+2)}{s(s+10)(s^2+2s+2)}$.

15% (a) Sketch the root locus.

 $\underline{10\%}$ (b) Find the range of gain K for stability of the closed-loop system.

3. Considering the following system.

10% (a) Find the equivalent transfer function C(s)/R(s).

 $\underline{15\%}$ (b) Find the ranges of K_1 and K_2 to keep the closed-loop system stable.

4. Consider a LTI state-space equation

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

10% (a) Show that the solution of this state-space equation can be derived as

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$
.

15% (b) If $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, find e^{At} by using the Cayley-Hamilton theorem.