國立臺北科技大學

106 學年第二學期電機系博士班資格考試

智慧型控制(Artificial Intelligence Control)試題

第一頁 共二頁

- 本試題共【4】題,配分共100分。
 請按順序標明題號作答,不必抄題。
 全部答案均須答在試卷答案欄內,否則不予計分。
 考試時間:二小時。
- 不准使用任何形式之計算器。
- 1. Fuzzy sets $A(x) \subset U$ and $B(y) \subset V$, universe of discourse $U = \{x_1, x_2, x_3, x_4\}$ and $V = \{y_1, y_2, y_3\}$; $A = \frac{0.9}{x_1} + \frac{0.7}{x_2} + \frac{0.3}{x_3} + \frac{0.8}{x_4}$, $B = \frac{0.3}{y_1} + \frac{0.5}{y_2} + \frac{0.6}{y_3}$. Find the relation $R = A \times B$ using the Cartesian product.
- 2. Let $U = \{x_1, x_2, x_3\}$ and $V = \{y_1, y_2\}$. Suppose that $x \in U$, $y \in V$ and use the following fuzzy rule: IF x is A, THEN y is B

Where the fuzzy sets A and B are defined as $A = \frac{0.7}{x_1} + \frac{0.8}{x_2} + \frac{0.5}{x_3}$ and $B = \frac{0.9}{y_1} + \frac{0.4}{y_2}$. Give (x is A',) where $A' = \frac{0.3}{x_1} + \frac{0.4}{x_2} + \frac{0.5}{x_3}$, Derive a output conclusion in the form (y is B',) where the fuzzy relation $A \rightarrow B$ is interpreted using Mamdani's product implication and min for the t-norm. (25%)

3. Figure 1. shows a 3-inputs/1-output perceptron. The perceptron uses the hardlim transfer function and the input (\mathbf{p}_1 and \mathbf{p}_2)/ target output (t_1 and t_2) prototype vectors are as follows:

$$\{\mathbf{p}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, t_1 = [0]\} \text{ and } \{\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, t_2 = [1]\}.$$

Using the perceptron learning rule, find the weight matrix \mathbf{w} and bias b with the initial $\mathbf{w}(0) =$ [0.5 - 1 - 0.5] and b(0) = 0.5 to make correct classification of the two input vectors.

4. Consider the function $F(\mathbf{x}) = x_1^2 + 2x_1x_2 + 2x_2^2 + x_1 + 2$, calculating the stationary point in order to find the minimum or maximum of the function $F(\mathbf{x})$. (25%)

第二頁 共二頁