國立臺北科技大學 九十六學年第一學期電機系博士班資格考試

最佳控制試題

填學生證號碼

第一頁 共二頁

				ľ
				ı
				L

注意事項:

- 1. 本試題共【6】題,配分共100分。
- 2. 請按順序標明題號作答,不必抄題。
- 3. 全部答案均須答在試卷答案欄內,否則不予計分。
- 4. 考試時間:二小時。

- 1. (20 %) What kind of optimization problems are solved by using the <u>Lagrange</u> multiplier method? What is the merit of this method?
- 2. (15%) What is the Pontryagin's Minimum Principle?
- 3. (10%) What is the principle of optimality in dynamic programming?
- 4. (15 %) A major difficulty when solving the <u>algebraic Riccati equation</u> is it is a nonlinear equation. In general, how to solve the ARE? Explain it!
- 5. (20 %) Consider a system:

$$\ddot{\theta}(t) = u(t)$$
.

with $\theta(0) = 1$, $\theta(2) = 0$, $\dot{\theta}(0) = 1$, $\dot{\theta}(2) = 0$. Derive the control input such that the performance index $J(x) = \frac{1}{2} \int_0^2 \ddot{\theta}^2(t) dt$ will be minimized.

6. (20 %) Consider a system:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u,$$

with the performance index: $J = \frac{1}{2} \int_0^\infty (x^T \begin{bmatrix} q_1 & 0 \\ 0 & q_2 \end{bmatrix} x + u^2) dt$.

Derive the control input u(t).